EvoGrad: A Dynamic Take on the Winograd Schema Challenge with Human Adversaries

Abstract

While Large Language Models (LLMs) excel at the Winograd Schema Challenge (WSC), a coreference resolution task testing common-sense reasoning through pronoun disambiguation, they struggle with instances that feature minor alterations or rewording. To address this, we introduce EvoGrad, an open-source platform that harnesses a human-in-the-loop approach to create a dynamic dataset tailored to such altered WSC instances. Leveraging ChatGPT’s capabilities, we expand our task instances from 182 to 3691, setting a new benchmark for diverse common-sense reasoning datasets. Additionally, we introduce the error depth metric, assessing model stability in dynamic tasks. Our results emphasize the challenge posed by EvoGrad: Even the best performing LLM, GPT-3.5, achieves an accuracy of 65.0% with an average error depth of 7.2, a stark contrast to human performance of 92.8% accuracy without perturbation errors. This highlights ongoing model limitations and the value of dynamic datasets in uncovering them.

Publication
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)